Driven Sound and Security

Car Audio | Marquette, Michigan

  • About Us
    • Contact Us
    • Directions
    • Testimonials
  • Products
    • Auto Accessories
    • Apple CarPlay & Android Auto
    • Backup Safety
    • Car Audio
    • Ceramic Coatings
    • Heated Seats
    • Marine Audio And Accessories
    • Mobile Video
    • Paint Protection Film
    • Powersports Audio
    • Remote Car Starters
      • Remote Car Starter Models
    • Rustproofing
    • Truck Bed Covers
    • Truck Step Bars
    • Window Tinting
  • ARTICLES
  • INSTALLS
  • Contact
  • Facebook
  • Instagram
  • Twitter

Car Audio Electrical Theory – Amplitude and Frequency in AC Signals

October 28, 2018 By BestCarAudio.com Leave a Comment

AmplitudeIn our ongoing discussion of car audio electrical theory, we need to discuss some of the characteristics of alternating current signals. These points of discussion include the concept of amplitude and frequency. Understanding the concept of frequency is crucial to developing an understanding of how the components in our audio systems work.

The Concept of Signal Amplitude

Thankfully, we are going to start off easy with a discussion of signal amplitude. When it comes to the ability of an AC signal to do work, just as with a DC power source, more amplitude (or level) means that more work can be done.

AmplitudeIn a DC power source, the amplitude is fixed at a certain level. In our cars, this level is around 12 volts. In our homes, the voltage at the wall receptacle is 120V. High-power devices like an electric stove, a clothes dryer or an air conditioner are typically powered by 240V to reduce the amount of current required to make these devices operate.

When we want to reproduce sound, we need to supply an audio signal from an amplifier to the voice coil of a speaker. Ignoring the design limitations of a speaker, supplying more voltage results in the cone moving farther and thus producing more sound.

If our amplifier is producing 1 volt rms of signal to a speaker with a nominal impedance of 4 ohms, then the speaker is receiving 0.25 watts of power (calculated using the equation P = V^2 ÷ R). If we increase the voltage to 2 volts, the power at the speaker is now 1 watt ((2×2) ÷ 4). If the voltage increases to 10 volts, the power is now 25 watts.

If we were to look at the two signals described above (1Vrms and 2Vrms) on an oscilloscope (a device that shows voltage relative to time), you would see the following:
AmplitudeJust a reminder: The RMS value of a sine wave is 0.707 times its peak value. In the case of these waveforms, the peak values would be 1.414 and 2.818 volts.

The Concept of Frequency

Signals Containing Multiple Frequencies

Let’s step back a bit and look at the fundamentals of analyzing the frequency content of a signal. The graph you see below shows a single 1kHz signal.

AmplitudeThe “stuff” you see at the bottom of the screen is noise. Every signal contains some amount of noise. For this graph, we can see that the 1kHz signal is recorded at a level of 0dB and that the loudest noise component is almost 170dB quieter. This low amplitude makes the noise level irrelevant.

What can be difficult to understand is that a signal can be, and often is, made up of many different frequencies. This graph shows an audio signal that contains 1kHz and 2kHz signals.

AmplitudeAlmost every audio signal we hear comprises an infinite number of frequencies. The relative level of these frequencies is what makes one person’s voice sound different than another’s or makes a piano sound different than a guitar.

These two frequency response graphs show a piano and a guitar both playing Middle C with a frequency of 256 Hz.

The red line represents the response of the guitar, showing a peak at 256 Hz, a strong harmonic at 512 Hz and an intermodulation peak at 768Hz.

The green line shows the frequency response of a piano playing the same 256 Hz middle C note. It has significantly more harmonic content with harmonics and intermodulation peaks above and below the fundamental.

Audio Measurement Waveforms

Two waveforms are commonly used to test audio equipment and audio signals. The first is called a white noise signal. This signal includes random audio signals at all frequencies up to the cutoff of the recording medium (in this case, 22.05kHz or our 44.1kHz sampling rate WAV file). Each frequency is the same in terms of amplitude. We can use this signal along with a real-time analyzer to measure the frequency response of audio components.

Here is the frequency response plot of a white noise signal:

AmplitudeAnother important signal is called pink noise. We use this signal when measuring the frequency response of a speaker. Unlike white noise that contains signals at equal levels at all frequencies, pink noise has an equal amount of signal energy per octave. When looked at in the frequency domain, the level decreases at a rate of 10dB per octave as frequency increases.

AmplitudeWhen you play pink noise through a set of speakers and measure the response with a microphone, you will be looking for a flat waveform.

Frequency Response of a Loudspeaker

Let’s take a high-quality, 6.5-inch coaxial speaker with a specified efficiency of 89dB when supplied with pink noise at a level of 2.83V and measured at a distance of 1 meter. A value of 2.83 volts happens to work out to 2 watts using the P = V^2/R equation.

While this specification works when we feed the speaker a pink noise signal, it doesn’t tell us how loud the speaker is at a specific frequency. For that, we need a frequency response graph.

AmplitudeThis frequency response graph shows us how much sound energy this speaker will produce when driven by a pink noise signal.

This particular driver has a gentle dip around 1kHz, some emphasis in the mid-bass region between 80 and 150Hz and a gently rising response above 2kHz to improve off-axis performance. In a car, this speaker sounds amazing!

The Bonus Signal – A Square Wave

OK, strap on your space suit, thinking cap or whatever will help you understand the following. We are going to look at a square wave. A square wave is a waveform that combines harmonics (multiples) of a fundamental frequency to create a waveform of a specific shape. The waveform appears to have two values, one high and one low. It’s for this reason that people incorrectly assume that these are Direct Current (DC) levels.

The formula to create a square wave is made up of multiple odd-ordered harmonics of the fundamental frequency. If you have a 30Hz square wave and look at it in the frequency domain, you can see these harmonics.

When an amplifier is pushed beyond its output voltage limit, it creates a square wave. There is no DC content in the signal, but it IS full of high-frequency harmonic content.

Using an Excel spreadsheet created by Alexander Weiner from Germany, here are six graphs that show how a square wave is created by adding odd-ordered harmonics to a fundamental signal. For a perfect waveform, we need an infinite number of harmonics.

AmplitudeThe yellow line shows a single sine wave with no harmonics.

AmplitudeThe yellow waveform adds the third harmonic of the fundamental frequency.

AmplitudeThe yellow waveform adds the third and fifth harmonic of the fundamental frequency.

AmplitudeThe yellow waveform adds the third, fifth and seventh harmonic of the fundamental frequency.

AmplitudeThe yellow waveform shows the 100 odd-ordered harmonics as well as the fundamental frequency.

AmplitudeIn this graph, we have the fundamental frequency and 256 odd-ordered harmonics added together.

If you have ever wondered why tweeters seem to the be the first to fail when an amp is driven into clipping or distortion, the reason is the addition of high-frequency information to the audio signal. Where we might have been feeding one or two watts to a tweeter with music, a square wave or a waveform containing significant harmonics contains a great deal more high-frequency information.

We hope this wasn’t too much to information for a single article. Understanding waveform amplitude and frequency content are crucial to any discussion of a mobile audio system. In our next article, we are going to discuss the flow of electricity through a conductor and the associated magnetic field that is created.

This article is written and produced by the team at www.BestCarAudio.com. Reproduction or use of any kind is prohibited without the express written permission of 1sixty8 media.

Filed Under: ARTICLES, Car Audio, RESOURCE LIBRARY, Uncategorized

About BestCarAudio.com

BestCarAudio.com is a showcase for the very best mobile electronics retailers in the world and a place to educate and inform interested consumers about existing and emerging technologies.

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Search our site with any combination of CATEGORIES, TAGS, or KEYWORDS

  • Category

  • Tags

  • Sort Order

  • Keyword

  • Reset

Heated Seats

In the harsh winter months, nothing is less appealing than climbing into a cold and uncomfortable vehicle. It doesn't have to be that way. Driven … ...More

Car Audio

What Size Subwoofer Should I Buy for My Car Stereo

When it comes to audio and technology upgrades for your car, truck or SUV, Driven Sound and Security in Marquette offers the best solutions in … ...More

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 23 other subscribers

Popular Topics

3M 2012 2013 2014 2015 2016 2017 2018 2019 Alpine Amplifiers Android Auto Apple CarPlay AudioControl Backup Cameras Bed Covers Bluetooth Ceramic Coating Chevrolet Chevy Compustar Dodge DroneMobile Ford FX Premium GMC Grand Cherokee Gtechniq Jeep JL Audio Kenwood LED Lighting Overhead Video Paint Correction RAM Rockford Fosgate Sierra Silverado SiriusXM Speakers Subaru subwoofers Suspension Lift Kits Toyota Wrangler

Featured Article

A woman scraping ice off a car windshield

Debunking Myths About Remote Car Starters

Remote car starters have become a popular feature for vehicle owners seeking convenience and comfort. However, several misconceptions persist, causing some to hesitate when considering this upgrade. Let’s examine and debunk seven common myths about remote car starters. Myth 1: Remote Starters Are … ...More

Featured Article

The view from inside a car of a drive in the country

Factory vs. Aftermarket Car Audio: What You Need to Know

Business Hours

Monday, Tuesday, Wednesday, Thursday, Friday9:00 am – 6:00 pm

Saturdays are by appointment only and we are closed on Sunday

Location


Get Directions to Driven Sound & Security

Address and Contact Information

Driven Sound and Security

2293 US 41W
Marquette, MI 49855
(906) 226-2626

Copyright © 2025 Driven Sound And Security · Privacy Policy · Website by 1sixty8 media, inc. · Log in

 

Loading Comments...